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Motivation

• This week we’ll show H = T+ V is self adjoint
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Motivation

We know

• T is self-adjoint
• V is self-adjoint

Can we say T+ V is self-adjoint?
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Motivation

Generally, if

• T1 is self-adjoint
• T2 is self-adjoint

Does it imply that T1 + T2 is self-adjoint?
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Motivation

• T1 is defined D(T1)
• T2 is defined D(T2)

T1 + T2 is defined on D(T1 + T2) = D(T1) ∩ D(T2)
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Motivation

There are two ways to show H = T+ V is self adjoint

1 Kato-Rellich Theorem
Direct proof
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Intro



Basic Consepts

Definition

Let X ≠ 0 be a complex normed space and T : D(T) → X is a linear
operator and D(T) ⊂ X. With T we associate the operator

Tλ = T− λI

where λ ∈ C and I is the identity operator on D(T). If Tλ has an
inverse, we call resolvent operator of T

Rλ(T) := T−1λ = (T− λI)−1

Rλ(T) helps to solve the equation Tλx = y. Thus, x = T−1λ y = Rλ(T)y
provided Rλ(T) exists.
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Regular Value, Resolvent Set, Spectrum

T : D(T) → X be a linear operator. A regularvalue λ of T

(R1) Rλ(T) exists,
(R2) Rλ(T) is bounded,
(R3) Rλ(T) is defined on a set which is dense in X.

The resolvent set ρ(T) of T is the set of all refular values of λ of T.
σ(T) = C− ρ(T) is called the spectrum of T.

Thm: λ ∈ ρ(T) iff there exists a c > 0 such that for all x ∈ D(T),

c∥x∥ ≤ ∥Tλx∥
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Point Spectrum, Continuous Spectrum, Residual Spectrum

Satisfied Not Satisfied λ belongs to

R1, R2,R3 - ρ(T)
- R1 σp(T)

R1,R3 R2 σc(T)
R1 R3 σr(T)

C = ρ(T) ∪ σ(T)
= σp(T) ∪ σc(T) ∪ σd(T)

If Tλx = (T− λI)x = 0 for some x ̸= 0 then λ ∈ σp(T), by definition is
eigenvalue of T. The vector x is then called eigenvector (or
eigenfunction -if X is function space) of T.
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Domain of Rλ(T)

Lemma 1Let T : X→ X be a linear operor, and λ ∈ ρ(T). If T is closed or
bounded then Rλ(T) is defined on the whole space X and is bounded.

Proof Since T is closed, so is Tλ. Hence Rλ is closed. Rλ bounded by
R2. Hence D(Rλ) is closed, R3 implies that D(Rλ) = D(Rλ) = X
Since D(T) = X and T is bounded, T is closed (the remaning of the
proof is the same as before).
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Spectrum

Theorem The spectrum σ(T) of a self-adjoint operator T : D(T) → H is
real and closed, here H is complex Hilbert space and D(T) dense in H.
Proof For all x ̸= 0 in D(T) we have

⟨Tλx, x⟩ = ⟨Tx, x⟩ − λ⟨x, x⟩

and since ⟨x, x⟩, ⟨Tx, x⟩ are real

⟨Tλx, x⟩ = ⟨Tx, x⟩ − λ⟨x, x⟩

2iIm⟨Tλx, x⟩ = ⟨Tλx, x⟩ − ⟨Tλx, x⟩ = (λ− λ)⟨x, x⟩ = 2iβ∥x∥2

By Schwatz inequality,

|β|∥x∥2 ≤ |⟨Tλx, x⟩| ≤ ∥Tλx∥∥x∥

we have, |β|∥x∥ ≤ ∥Tλx∥ for all x. If λ is not real, β ̸= 0, so that
λ ∈ ρ(T) by previous theorem. Hence σ(T) must be real.
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Inverse

Lemma 2 T : X→ X. If ∥T∥ < 1 then (I− T)−1 exists as a bounded
linear operator on the whole space X and

(I− T)−1 =
∑∞

j=0 Tj = I+ T+ T2 + · · ·

Proof We have ∥Tj∥ ≤ ∥T∥j. Note that
∑∞

j=0 Tj converges for ∥T∥ < 1.
Let S be the sum of the series. It remains to show that S = (I− T)−1

(I− T)(I+ T+ · · · Tn) = (I+ T+ · · · Tn)(I− T) = I− Tn+1

Since ∥T∥ < 1, Tn+1 → 0 when n→ ∞. Thus

(I− T)S = S(I− T) = I

This shows S = (I− T)−1
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Spectral Representation of Self-Adjoint Linear Operators

Let T : D → H be an operator on Hilbert space H, where D is dense in
H and T may be unbounded. The operator U

U = (T− iI)(T+ iI)−1

is called Cayley transform of T[kreyszig1991introductory].
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Cayley Transform

Lemma 3 The Cayley Transform of a self-adjoint operator
T : D(T) → H exists and unitary operator.
Proof Since T is self adjoint, σ(T) is real. Hence i,−i ∈ ρ(T).
Consequently, by definition of ρ(T), the inverses (T+ iI)−1 and
(T− iI)−1 exists on a dense subset of of H and are bounded
operators. Since T∗ is closed and T = T∗, T is closed. By Lemma 1,

R(T+ iI) = H R(T− iI) = H

We thus have, since I is defined on all of H,

(T+ iI)−1(H) = D(T+ iI) = D(T) = D(T− iI)

as well as

(T+ iI)−1(D(T)) = H
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Cayley Transform

It remains to show U is isometric. Let x ∈ H and y = (T+ iI)−1x

∥Ux∥2 = ∥(T− iI)y∥2

= ⟨Ty− iy, Ty− iy⟩
= ⟨Ty, Ty⟩+ i⟨Ty, y⟩ − i⟨y, Ty⟩+ ⟨iy, iy⟩
= ⟨Ty+ iy, Ty+ iy⟩
= ∥(T+ iI)y∥2

= ∥(T+ iI)(T+ iI)−1x∥2

= ∥x∥2
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Lemma

Lemma The operator T0 + V defined on D0 is
self-adjoint.[10.2307/1990366]
Proof

• R(T0 + V) = R(T0 + V+ λI) = λR(T0 + V+ iI)
• T0 + V : D(T0 + V) → R(T0 + V) is self adjoint iff
R(T0 + V+ iI) = L2

•

(T0 + V+ λI) = (T0 + λI) + V
= (T0 + λI) + V(T0 + λI)(T0 + λI)−1

= (1+ V(T0 + λI)−1)(T0 + λI)
= (1+ VRλ(T0))T0λ

*Since T0 : D0 → L2 is self-adjoint, T0λ : D0 → L2 by definition.
*By lemma 1, Rλ(T0) exists and defined on L2.

15



Lemma

Let ϕ ∈ L2, then we have

∥VRλ(T0)ϕ∥ ≤ a∥T0Rλ(T0)ϕ∥+ b∥Rλ(T0)ϕ∥ (1)
≤ a∥ϕ∥+ bλ−1∥ϕ∥ (2)
= a+ bλ−1 (3)
< 1 (4)

Therefore, (1+ VRλ(T0))−1 exists and defined on L2 (Lemma 2). Hence,
R(1+ VRλ(T0)) = L2
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Theorem

Theorem H1 is essentially self-adjoint, and its unique self-adjoint
extension coincides with T0 + V

Proof We know

Domain of H1 is D1 and D1 ⊆ D0

H1 = T1 + V ⊆ T0 + V
V is relatively bounded by T0 (i.e ∥Vf∥ ≤ a∥T0f∥+ b∥f∥)
T̃1 = T0, T1 is essentially self-adjoint.

Therefore, H1 is essentially self-adjoint.
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