Kato Theorem Part 4

Ege Şirin

• This week we'll show H = T + V is self adjoint

1

We know

- T is self-adjoint
- · V is self-adjoint

Can we say T + V is self-adjoint?

Generally, if

- T_1 is self-adjoint
- T₂ is self-adjoint

Does it imply that $T_1 + T_2$ is self-adjoint?

- T_1 is defined $\mathcal{D}(T_1)$
- T_2 is defined $\mathcal{D}(T_2)$

$$T_1 + T_2$$
 is defined on $\mathcal{D}(T_1 + T_2) = \mathcal{D}(T_1) \cap \mathcal{D}(T_2)$

1

There are two ways to show H = T + V is self adjoint

- 1 Kato-Rellich Theorem
- ✓ Direct proof

Intro

Basic Consepts

Definition

Let $X \neq 0$ be a complex normed space and $T : \mathcal{D}(T) \to X$ is a linear operator and $\mathcal{D}(T) \subset X$. With T we associate the operator

$$T_{\lambda} = T - \lambda I$$

where $\lambda \in \mathbf{C}$ and I is the identity operator on $\mathcal{D}(T)$. If T_{λ} has an inverse, we call **resolvent** operator of T

$$R_{\lambda}(T) := T_{\lambda}^{-1} = (T - \lambda I)^{-1}$$

 $R_{\lambda}(T)$ helps to solve the equation $T_{\lambda}x = y$. Thus, $x = T_{\lambda}^{-1}y = R_{\lambda}(T)y$ provided $R_{\lambda}(T)$ exists.

6

Regular Value, Resolvent Set, Spectrum

 $T: \mathcal{D}(T) \to X$ be a linear operator. A *regularvalue* λ of T

- (R1) $R_{\lambda}(T)$ exists,
- (R2) $R_{\lambda}(T)$ is bounded,
- (R3) $R_{\lambda}(T)$ is defined on a set which is dense in X.

The **resolvent set** $\rho(T)$ of T is the set of all refular values of λ of T. $\sigma(T) = \mathbf{C} - \rho(T)$ is called the **spectrum** of T.

Thm: $\lambda \in \rho(T)$ iff there exists a c > 0 such that for all $x \in \mathcal{D}(T)$,

$$c||x|| \le ||T_{\lambda}x||$$

Point Spectrum, Continuous Spectrum, Residual Spectrum

Satisfied	Not Satisfied	λ belongs to
R1, R2,R3	-	$\rho(T)$
-	R1	$\sigma_p(T)$
R1,R3	R2	$\sigma_c(T)$
R1	R3	$\sigma_r(T)$

$$C = \rho(T) \cup \sigma(T)$$
$$= \sigma_p(T) \cup \sigma_c(T) \cup \sigma_d(T)$$

If $T_{\lambda}x = (T - \lambda I)x = 0$ for some $x \neq 0$ then $\lambda \in \sigma_p(T)$, by definition is eigenvalue of T. The vector x is then called eigenvector (or eigenfunction -if X is function space) of T.

Domain of $R_{\lambda}(T)$

Lemma 1Let $T: X \to X$ be a linear operor, and $\lambda \in \rho(T)$. If T is closed or bounded then $R_{\lambda}(T)$ is defined on the whole space X and is bounded.

Proof Since T is closed, so is T_{λ} . Hence R_{λ} is closed. R_{λ} bounded by R2. Hence $\mathcal{D}(R_{\lambda})$ is closed, R3 implies that $\mathcal{D}(R_{\lambda}) = \overline{\mathcal{D}(R_{\lambda})} = X$ Since $\mathcal{D}(T) = X$ and T is bounded, T is closed (the remaning of the proof is the same as before).

Spectrum

Theorem The spectrum $\sigma(T)$ of a self-adjoint operator $T: \mathcal{D}(T) \to H$ is real and closed, here H is complex Hilbert space and $\mathcal{D}(T)$ dense in H. Proof For all $x \neq 0$ in $\mathcal{D}(T)$ we have

$$\langle T_{\lambda} x, x \rangle = \langle T x, x \rangle - \lambda \langle x, x \rangle$$

and since $\langle x, x \rangle$, $\langle Tx, x \rangle$ are real

$$\overline{\langle T_{\lambda} x, x \rangle} = \langle T x, x \rangle - \overline{\lambda} \langle x, x \rangle$$

$$2iIm\langle T_{\lambda}x, x\rangle = \overline{\langle T_{\lambda}x, x\rangle} - \langle T_{\lambda}x, x\rangle = (\lambda - \overline{\lambda})\langle x, x\rangle = 2i\beta ||x||^2$$

By Schwatz inequality,

$$|\beta|||x||^2 \le |\langle T_{\lambda}x, x \rangle| \le ||T_{\lambda}x|| ||x||$$

we have, $|\beta| ||x|| \le ||T_{\lambda}x||$ for all x. If λ is not real, $\beta \ne 0$, so that $\lambda \in \rho(T)$ by previous theorem. Hence $\sigma(T)$ must be real.

Inverse

Lemma 2 $T: X \to X$. If ||T|| < 1 then $(I - T)^{-1}$ exists as a bounded linear operator on the whole space X and

$$(I-T)^{-1} = \sum_{j=0}^{\infty} T^j = I + T + T^2 + \cdots$$

Proof We have $\|T^j\| \le \|T\|^j$. Note that $\sum_{j=0}^{\infty} T^j$ converges for $\|T\| < 1$. Let S be the sum of the series. It remains to show that $S = (I - T)^{-1}$

$$(I-T)(I+T+\cdots T^n)=(I+T+\cdots T^n)(I-T)=I-T^{n+1}$$

Since ||T|| < 1, $T^{n+1} \to 0$ when $n \to \infty$. Thus

$$(I-T)S = S(I-T) = I$$

This shows $S = (I - T)^{-1}$

Spectral Representation of Self-Adjoint Linear Operators

Let $T: \mathcal{D} \to H$ be an operator on Hilbert space H, where \mathcal{D} is dense in H and T may be unbounded. The operator U

$$U = (T - iI)(T + iI)^{-1}$$

is called *Cayley transform* of *T*[kreyszig1991introductory].

Cayley Transform

Lemma 3 The Cayley Transform of a self-adjoint operator $T:\mathcal{D}(T)\to H$ exists and unitary operator. Proof Since T is self adjoint, $\sigma(T)$ is real. Hence $i,-i\in\rho(T)$. Consequently, by definition of $\rho(T)$, the inverses $(T+iI)^{-1}$ and $(T-iI)^{-1}$ exists on a dense subset of of H and are bounded operators. Since T^* is closed and $T=T^*$, T is closed. By Lemma 1,

$$\mathcal{R}(T+iI) = H \quad \mathcal{R}(T-iI) = H$$

We thus have, since I is defined on all of H,

$$(T+iI)^{-1}(H) = \mathcal{D}(T+iI) = \mathcal{D}(T) = \mathcal{D}(T-iI)$$

as well as

$$(T+iI)^{-1}(\mathcal{D}(T))=H$$

Cayley Transform

It remains to show *U* is isometric. Let $x \in H$ and $y = (T + iI)^{-1}x$

$$||UX||^{2} = ||(T - iI)y||^{2}$$

$$= \langle Ty - iy, Ty - iy \rangle$$

$$= \langle Ty, Ty \rangle + i \langle Ty, y \rangle - i \langle y, Ty \rangle + \langle iy, iy \rangle$$

$$= \langle Ty + iy, Ty + iy \rangle$$

$$= ||(T + iI)y||^{2}$$

$$= ||(T + iI)(T + iI)^{-1}x||^{2}$$

$$= ||x||^{2}$$

Lemma

Lemma The operator $T_0 + V$ defined on \mathcal{D}_0 is self-adjoint.[10.2307/1990366]

•
$$\mathcal{R}(T_0 + V) = \mathcal{R}(T_0 + V + \lambda I) = \lambda \mathcal{R}(T_0 + V + iI)$$

• $T_0 + V : \mathcal{D}(T_0 + V) \rightarrow \mathcal{R}(T_0 + V)$ is self adjoint iff $\mathcal{R}(T_0 + V + iI) = L^2$

 $(T_0 + V + \lambda I) = (T_0 + \lambda I) + V$ $= (T_0 + \lambda I) + V(T_0 + \lambda I)(T_0 + \lambda I)^{-1}$ $= (1 + V(T_0 + \lambda I)^{-1})(T_0 + \lambda I)$ $= (1 + VR_{\lambda}(T_0))T_{0\lambda}$

*Since $T_0: \mathcal{D}_0 \to L^2$ is self-adjoint, $T_{0\lambda}: \mathcal{D}_0 \to L^2$ by definition.

*By lemma 1, $R_{\lambda}(T_0)$ exists and defined on L^2 .

Lemma

Let $\phi \in L^2$, then we have

$$||VR_{\lambda}(T_0)\phi|| \le a||T_0R_{\lambda}(T_0)\phi|| + b||R_{\lambda}(T_0)\phi||$$
(1)

$$\leq a\|\phi\| + b\lambda^{-1}\|\phi\| \tag{2}$$

$$= a + b\lambda^{-1} \tag{3}$$

$$< 1$$
 (4)

Therefore, $(1 + VR_{\lambda}(T_0))^{-1}$ exists and defined on L^2 (Lemma 2). Hence, $\mathcal{R}(1 + VR_{\lambda}(T_0)) = L^2$

Theorem

Theorem H_1 is essentially self-adjoint, and its unique self-adjoint extension coincides with $T_0 + V$

Proof We know

- \checkmark Domain of H_1 is \mathcal{D}_1 and $\mathcal{D}_1 \subseteq \mathcal{D}_0$
- $\checkmark H_1 = T_1 + V \subseteq T_0 + V$
- ✓ V is relatively bounded by T_0 (i.e $||Vf|| \le a||T_0f|| + b||f||$)
- \checkmark $\tilde{T}_1 = T_0$, T_1 is essentially self-adjoint.

Therefore, H_1 is essentially self-adjoint.

References

[1] Tosio Kato
Fundamental Properties of Hamiltonian Operators of
Schrodinger Type

[2] Kreyszig, E.
Introductory Functional Analysis with Applications
Wiley Classics Library, (1991).

American Mathematical Society. (1951), 195–211.