Kato Theorem Part 4
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Motivation



- This week we'll show H = T + V is self adjoint



We know

- Tis self-adjoint

- Vis self-adjoint

Can we say T+ V is self-adjoint?



Generally, if

- T, is self-adjoint

- T, is self-adjoint

Does it imply that Ty + T, is self-adjoint?



- T is defined D(Th)
- T, is defined D(T,)

T1+ T, is defined on D(Ty + T,) = D(T7) N D(T3)



There are two ways to show H = T + V is self adjoint

1 Kato-Rellich Theorem
v~ Direct proof



Intro



Basic Consepts

Definition

Let X £ 0 be a complex normed space and T: D(T) — Xis a linear
operator and D(T) C X. With T we associate the operator

Ta=T—\

where XA € Cand [ is the identity operator on D(T). If Ty has an
inverse, we call resolvent operator of T

RA(T) =Ty = (T— )"

Rx(T) helps to solve the equation Tyx = y. Thus, x = T 'y = Ry (T)y
provided Ry (T) exists.



Regular Value, Resolvent Set, Spectrum

D(T) — X be a linear operator. A regularvalue X of T

)

) RA(T) exists,

R2) RA(T) is bounded,
(R3) RA(T) is defined on a set which is dense in X.

The resolvent set p(T) of T is the set of all refular values of A of T.
a(T) = C— p(T) is called the spectrum of T.

Thm: X € p(T) iff there exists a ¢ > 0 such that for all x € D(T),

clixll < 1Tl



Point Spectrum, Continuous Spectrum, Residual Spectrum

H Satisfied  Not Satisfied A belongs to

R1, R2,R3 - o(T)
- R1 op(T)
R1,R3 R2 o(T)
R1 R3 o(T)

C=p(MUo(T)
= op(T) Uac(T) U ay(T)
If Tax = (T — M)x = 0 for some x # 0 then A € g,(T), by definition is

eigenvalue of T. The vector x is then called eigenvector (or
eigenfunction -if X is function space) of T.



Domain of Ry(T)

Lemma 1Let T: X — X be a linear operor,and A € p(T). If T is closed or
bounded then R,(T) is defined on the whole space X and is bounded.

Proof Since T is closed, so is Ty. Hence R, is closed. Ry bounded by
R2. Hence D(R,) is closed, R3 implies that D(R,) = D(Ry) = X
Since D(T) = X and T is bounded, T is closed (the remaning of the

proof is the same as before).



Theorem The spectrum o(T) of a self-adjoint operator T: D(T) — H is
real and closed, here H is complex Hilbert space and D(T) dense in H.
Proof For all x # 0 in D(T) we have

(Tax, X) = (Tx, X) — A{x, X)
and since (x,x), (Tx, x) are real
(TaX, X) = (Tx, X) — A(X, X)
20ilm(Tax, X) = (Tax, X) — (Tax, x) = (A = X){x,x) = 2iB]|x||?
By Schwatz inequality,
BIIXIZ < KTox, x)| < Tl Ix]

we have, |B]||x|| < [|Txx|| for all x. If Xis not real, 8 # 0, so that
A € p(T) by previous theorem. Hence o(T) must be real.



Inverse

Lemma 2 T: X — X If||T|| < 1then (I — T)~" exists as a bounded
linear operator on the whole space X and

(=T "= 2P =14+T+T+--

Proof We have ||T/|| < [|T|J'. Note that 3= T converges for ||T]| < 1.
Let S be the sum of the series. It remains to show that S = (/ — )™’

-1 +T+---T)=U4+T+---TYI=T)=1-T1"""
Since ||T|| < 1, T"*' — 0 when n — oo. Thus
(I-T)S=S(I-T)=1
This shows S = (I — T)~!

1



Spectral Representation of Self-Adjoint Linear Operators

Let T: D — H be an operator on Hilbert space H, where D is dense in
H and T may be unbounded. The operator U

U= (T—il)(T+in~"

is called Cayley transform of T[kreyszig1991introductory].



Cayley Transform

Lemma 3 The Cayley Transform of a self-adjoint operator
T:D(T) — H exists and unitary operator.

Proof Since T is self adjoint, o(T) is real. Hence i, —i € p(T).
Consequently, by definition of p(T), the inverses (T +il)~" and
(T —il)~" exists on a dense subset of of H and are bounded
operators. Since T* is closed and T = T*, T is closed. By Lemma 1,

R(T+i)=H R(T—il)=H
We thus have, since [ is defined on all of H,
(T+il)~Y(H) =D(T +il) =D(T) = D(T — il
as well as

(T+i)=(D(T))=H



Cayley Transform

It remains to show U is isometric. Letx € Hand y = (T +il)~"x

1UX])> = [I(T = inylI?
= (Ty =iy, Ty — Iy)
=Ty, Ty) + iTy,y) — iy, TV) + (iy, i)
= (Ty+ iy, Ty +iy)
= [I(T+ iny|?
= ||(T + (T + i) ~"x|]?

= [IxII
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Lemma

Lemma The operator To + V defined on Dy is
self-adjoint.[10.2307/1990366]
Proof

- R(To + V) = R(To + V + ) = XR(To + V + i)
- To+V:D(To+ V) = R(To + V) is self adjoint iff
R(To+V+il)=12

(To+V+A) = (To+A)+V

= (To + M) 4+ V(To + M)(To + AN
(

= (

14+ V(To 4+ M) (To + AI)
=(1+ \/R,\(TO))T[))\

*Since To : Do — L2 is self-adjoint, Toy : Dy — L? by definition.
*By lemma 1, Ry(To) exists and defined on L2



Lemma

Let ¢ € L2, then we have

IVRx(To)¢ll < al[ToRx(To)oll + bIIRA(To) | (1)
< allg] + bA7"gl| (2)
=a+bx"’ (3)
<1 (4)

Therefore, (1+ VRA(To)) " exists and defined on L? (Lemma 2). Hence,
R(1+ VRx(To)) = L?
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Theorem Hy is essentially self-adjoint, and its unique self-adjoint
extension coincides with To +V

Proof We know

v~ Domain of Hq is D; and Dy C Dy

v H=T1+VCTy+V

v Vis relatively bounded by Ty (i.e [|Vf]| < a||Tofl| + blIfl])
v’ Ty =Ty, Ty is essentially self-adjoint.

Therefore, H, is essentially self-adjoint.
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